69 research outputs found

    Increasing Pilots Understanding of Future Automation State an Evaluation of an Automation State and Trajectory Prediction System

    Get PDF
    A pilot in the loop flight simulation study was conducted at NASA Langley Research Center to evaluate a trajectory prediction system. The trajectory prediction system computes a five-minute prediction of the lateral and vertical path of the aircraft given the current and intent state of the automation. The prediction is shown as a graphical representation so the pilots can form an accurate mental model of the future state. Otherwise, many automation changes and triggers are hidden from the flight crew or need to be consolidated to understand if a change will occur and the exact timing of the change. Varying dynamic conditions like deceleration can obscure the future trajectory and the ability to meet constraints, especially in the vertical dimension. Current flight deck indications of flight path assume constant conditions and do not adequately support the flight crew to make correct judgments regarding constraints. The study was conducted using ten commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of conditions that provided evaluation in a realistic environment with complex traffic and weather conditions. In particular, scenarios probed automation state and loss of state awareness. The technology was evaluated and contrasted with current state-of-the-art flight deck capabilities modeled from the Boeing 787. Objective and subjective data were collected from aircraft parameters, questionnaires, audio/video recordings, head/eye tracking data, and observations. This paper details findings about the trajectory prediction system including recommendations about further study

    Analysis of Eye-Tracking Data During Conditions Conducive to Loss of Airplane State Awareness

    Get PDF
    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems and of the procedures for interacting with them appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it typically places a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. This can be problematic as too much information and/or ineffective provisions of information can potentially overwhelm and/or confuse pilots, and as a result, increase the likelihood of loss of airplane state awareness (ASA). One way to gain more insight into this issue is through experimentation using more objective measures. This study summarizes an analysis of eye-tracking data obtained during a high-fidelity flight simulation study that included most of the complexities of current flight decks, as well as several planned for the next generation air transportation system. Multiple analyses were performed to understand how the 22 participating airline pilots were observing ASA-related information provided during different stages of flights and in response to specific events within these stages. Also, study findings are compared to data presented in similar previous studies to assess trends or common themes regarding how airline crews apply visual attention in complex flight deck and operational environments

    Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Get PDF
    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs

    Information Management to Mitigate Loss of Control Airline Accidents

    Get PDF
    Loss of control inflight continues to be the leading contributor to airline accidents worldwide and unreliable airspeed has been a contributing factor in many of these accidents. Airlines and the FAA developed training programs for pilot recognition of these airspeed events and many checklists have been designed to help pilots troubleshoot. In addition, new aircraft designs incorporate features to detect and respond in such situations. NASA has been using unreliable airspeed events while conducting research recommended by the Commercial Aviation Safety Team. Even after significant industry focus on unreliable airspeed, research and other evidence shows that highly skilled and trained pilots can still be confused by the condition and there is a lack of understanding of what the associated checklist(s) attempts to uncover. Common mode failures of analog sensors designed for measuring airspeed continue to confound both humans and automation when determining which indicators are correct. This paper describes failures that have occurred in the past and where/how pilots may still struggle in determining reliable airspeed when confronted with conflicting information. Two latest generation aircraft architectures will be discussed and contrasted. This information will be used to describe why more sensors used in classic control theory will not solve the problem. Technology concepts are suggested for utilizing existing synoptic pages and a new synoptic page called System Interactive Synoptic (SIS). SIS details the flow of flight critical data through the avionics system and how it is used by the automation. This new synoptic page as well as existing synoptics can be designed to be used in concert with a simplified electronic checklist (sECL) to significantly reduce the time to configure the flight deck avionics in the event of a system or sensor failure

    Regarding Pilot Usage of Display Technologies for Improving Awareness of Aircraft System States

    Get PDF
    ed systems and the procedures for ng in complexity. This interacting trend places a larger burden on pilots to manage increasing amounts of information and to understand system interactions. The result is an increase in the likelihood of loss of airplane state awareness (ASA). One way to gain more insight into this issue is through experimentation using objective measures of visual behavior. This study summarizes an analysis of oculometer data obtained during a high-fidelity flight simulation study that included a variety of complex pilot-system interactions that occur in current flight decks, as well as several planned for the next generation air transportation system. The study was comprised of various scenarios designed to induce low and high energy aircraft states coupled with other emulated causal factors in recent accidents. Three different display technologies were evaluated in this recent pilot-in-the-loop study conducted at NASA Langley Research Center. These technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indication of when the automation is no longer actively controlling airspeed, and enhanced synoptic diagrams with corresponding simplified electronic interactive checklists. Multiple data analyses were performed to understand how the 26 participating airline pilots were observing ASA-related information provided during different stag specific events within these stages

    Evaluation of Technology Concepts for Energy, Automation, and System State Awareness in Commercial Airline Flight Decks

    Get PDF
    A pilot-in-the-loop flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) provide guidance for recovery from low energy states and stalls, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. The study was conducted using 13 commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of complex conditions and several emulated causal and contributing factors found in recent accidents involving loss of state awareness by pilots (e.g., energy state, automation state, and/or system state). Three new technology concepts were evaluated while used in concert with current state-of-the-art flight deck systems and indicators. The technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indicator that shows when automation is no longer actively controlling airspeed, and enhanced synoptic pages designed to work with simplified interactive electronic checklists. An additional synoptic was developed to provide the flight crew with information about the effects of loss of flight critical data. Data was collected via questionnaires administered at the completion of flight scenarios, audio/video recordings, flight data, head and eye tracking data, pilot control inputs, and researcher observations. This paper presents findings derived from the questionnaire responses and subjective data measures including workload, situation awareness, usability, and acceptability as well as analyses of two low-energy flight events that resulted in near-stall conditions

    Usability Evaluation of Indicators of Energy-Related Problems in Commercial Airline Flight Decks

    Get PDF
    A series of pilot-in-the-loop flight simulation studies were conducted at NASA Langley Research Center to evaluate indicators aimed at supporting the flight crews awareness of problems related to energy states. Indicators were evaluated utilizing state-of-the-art flight deck systems such as on commercial air transport aircraft. This paper presents results for four technologies: (1) conventional primary flight display speed cues, (2) an enhanced airspeed control indicator, (3) a synthetic vision baseline that provides a flight path vector, speed error, and an acceleration cue, and (4) an aural airspeed alert that triggers when current airspeed deviates beyond a specified threshold from the selected airspeed. Full-mission high-fidelity flight simulation studies were conducted using commercial airline crews. Crews were paired by airline for common crew resource management procedures and protocols. Scenarios spanned a range of complex conditions while emulating several causal factors reported in recent accidents involving loss of energy state awareness by pilots. Data collection included questionnaires administered at the completion of flight scenarios, aircraft state data, audio/video recordings of flight crew, eye tracking, pilot control inputs, and researcher observations. Questionnaire response data included subjective measures of workload, situation awareness, complexity, usability, and acceptability. This paper reports relevant findings derived from subjective measures as well as quantitative measures

    The effectiveness of tobacco control television advertisements in increasing the prevalence of smoke-free homes

    Get PDF
    BACKGROUND: There is considerable evidence that tobacco control mass media campaigns can change smoking behaviour. In the UK, campaigns over the last decade have contributed to declines in smoking prevalence and been associated with falls in cigarette consumption among continuing smokers. However, it is less evident whether such campaigns can also play a role in changing smokers’ behaviour in relation to protecting others from the harmful effects of their smoking in the home. We investigated whether exposure to English televised tobacco control campaigns, and specifically campaigns targeting second hand smoking, is associated with smokers having a smoke-free home. METHODS: We used repeated cross-sectional national survey data on 9872 households which participated in the Health Survey for England between 2004 and 2010, with at least one adult current smoker living in the household. Exposure to all government-funded televised tobacco control campaigns, and to those specifically with a second hand smoking theme, was quantified in Gross Rating Points (GRPs), an average per capita measure of advert exposure where 100 GRPs indicates 100 % of adults exposed once or 50 % twice. Our outcome was self-reported presence of a smoke-free home (where no one smokes in the home on most days). Analysis used generalised additive models, controlling for individual factors and temporal trends. RESULTS: There was no association between monthly televised campaigns overall and the probability of having a smoke-free home. However, exposure to campaigns specifically targeting second hand smoke was associated with increased odds of a smoke-free home in the following month (odds ratio per additional 100 GRPs, 1.07, 95 % CI 1.01 to 1.13), though this association was not seen at other lags. These effects were not modified by socio-economic status or by presence of a child in the home. CONCLUSIONS: Our findings provide tentative evidence that mass media campaigns specifically focussing on second hand smoke may be effective in reducing smoking in the home, and further evaluation of campaigns of this type is needed. General tobacco control campaigns in England, which largely focus on promoting smoking cessation, do not impact on smoke-free homes over and above their direct effect at reducing smoking

    Ultrasonic velocity in some liquid fluorocarbons /

    No full text
    Includes bibliographical references.This work was done by the Physics Department of Emory University, Georgia, and completed August 28, 1947, for Carbide and Carbon Chemicals Corporation, Oak Ridge, Tennessee, operating underMode of access: Internet
    • …
    corecore